Course Overview
Time Series Analysis allows us to analyze data which is generated over a period of time and has sequential interdependencies between the observations. The course is a lab-intensive, hands-on class that explores special mathematical tricks and techniques which are geared towards exploring the internal structures of time series data and generating powerful descriptive and predictive insights. The course is full of real-life examples of time series and their analyses using cutting-edge solutions developed in Python.
Throughout the course, students will learn descriptive analysis to create insightful visualizations of internal structures such as trend, seasonality, and autocorrelation, as well as statistical methods of dealing with autocorrelation and non-stationary time series. The course also covers using exponential smoothing to produce meaningful insights from noisy time series data. Later in the course, the focus will shift focus towards predictive analysis, introducing autoregressive models such as ARMA and ARIMA for time series forecasting. Students will also learn powerful deep learning methods to develop accurate forecasting models for complex time series, and under the availability of little domain knowledge. All the topics are illustrated with real-life problem scenarios and their solutions by best-practice implementations in Python.
Attending students will get their first experience with data analysis with one of the most powerful types of analysis—time-series. They will learn to find patterns in their data and predict the future pattern based on historical data, and learn the statistics, theory, and implementation of Time-series methods using this example-rich guide.
Key Learning Areas
This skills-based course is approximately 50% hands-on, combining expert lecture, real-world demonstrations and group discussions with machine-based practical labs and exercises. Our engaging instructors and mentors are highly experienced practitioners who bring years of current "on-the-job" experience into every classroom.
Working in a hands-on learning environment, guided by our expert team, attendees will learn to:
- Understand the basic concepts of Time Series Analysis and appreciate its importance for the success of a data science project
- Develop an understanding of loading, exploring, and visualizing time-series data
- Explore auto-correlation and gain knowledge of statistical techniques to deal with non-stationarity time series
- Take advantage of exponential smoothing to tackle noise in time series data
- Learn how to use auto-regressive models to make predictions using time-series data
- Build predictive models on time series using techniques based on auto-regressive moving averages
- Discover recent advancements in deep learning to build accurate forecasting models for time series
- Gain familiarity with the basics of Python as a powerful yet simple to write programming language
Course Outline
Please note that this list of topics is based on our standard course offering, evolved from typical industry uses and trends. We’ll work with you to tune this course and level of coverage to target the skills you need most.
Introduction to Time Series
- Different types of data
- Internal structures of time series
- Models for time series analysis
- Autocorrelation and Partial autocorrelation
Understanding Time Series Data
- Advanced processing and visualization of time series data
- Resampling time series data
- Stationary processes
- Time series decomposition
Exponential Smoothing based Methods
- Introduction to time-series smoothing
- First order exponential smoothing
- Second order exponential smoothing
- Modeling higher-order exponential smoothing
Auto-Regressive Models
- Auto-regressive models
- Moving average models
Deep Learning for Time Series Forecasting
- Multi-layer perceptrons
- Recurrent neural networks
- Convolutional neural networks
Getting Started with Python
- Installation
- Basic Data Types
- Keywords and functions
- Iterators, iterables, and generators
- Classes and objects
TSD Overview Project
- Course Project
Who Benefits
This course is geared for experienced data analysts, developers, engineers, or anyone tasked with utilizing Time Series Analysis with Python.
Prerequisites
- A background in basic Python development skills.
- Basic to Intermediate IT Skills Deep Learning for IoT
- Good foundational mathematics or logic skill
- Basic Linux skills, including familiarity with command-line options such as ls, cd, cp, and su